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Supplement A: Neural Network Model for the Conus Shell 
Pigmentation Patterns 

1 Mathematical Formulation 

In this part, we derive a shell model from a general neural model. The shell model consists of 

three parts:  the sensory cell model, the neural model and the secretory cell model. The sensory 

cell model and secretory cell model are derived from first-order dynamics, and neural model is 

derived from the Wilson-Cowan equation (1, 2). First, we derive a continuous model. Then we 

discretize it to get the discrete model that is used for simulations. Finally, we discuss its relations 

to diffusion-reaction models.  

1.1 Deriving a Shell Model from a General Neural Model 

In this section we derive the model equations starting from the Wilson-Cowan model for the 

firing rate pattern of a general excitatory/inhibitory network (1, 2).  
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Figure S1.  Schematic representation of the coordinate systems used in the derivations. 

To fix our notation, we denote by 0,1,2,3 the shell pattern, sensory, neural, and secretory cells, 

respectively, with coordinate systems shown in Figure S1. Assume the shell is a rectangle with 

coordinates (x0, y0), where 0 ≤ x0 ≤ L and 0 ≤ y0 ≤ Ts. y0 = 0 is the growing edge. The mantle has 

its own coordinates (x1, y1), where 0 ≤ x1 ≤ L and 0 ≤ y1 ≤ TM. We assume these coordinates do 

not change. The sensory cells are distributed on the mantle and ‘taste’ the pigments. The neural 

cells are aligned with the growing edge along the line y0 = 0 or y1=0.  
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1.1.1 The model for sensory cells 

We construct models for the sensory cells, neurons and secretory cells separately (Figure S1). 

The sensory cells are distributed in the mantle with coordinates (x1, y1). A sensory cell at (x1, y1) 

tastes the pigment on the shell at location (x0, y0)  

In general, the activity of the sensory cells at (x1, y1) on the mantle satisfy the Wilson-Cowan 

equations:  

Equation 1  ! (1) "u
(1) (x1, y1,t)

"t
= #u(1) (x1, y1,t) + S

(1) ($ (1) (x1, y1,t))
 

where S(1) (! (1) (x1, y1,t)) is the function computing the firing rate given the input: 

Equation 2  ! (1)(x1, y1, t) = K
(1)(x1, y1)!!u

(1)(x1, y1, t)+M
(1)(x1, y1)  

K (1)(x1, y1)models the recurrent connections between the sensory cells. M (1)(x1, y1) is the input to 

the sensory cell located at (x1, y1). On the neural time scale the pigment on the shell does not 

change, so M (1)(x1, y1)  is independent of time, and is given by the double convolution: 

Equation 3  M (1)(x1, y1) = W (1)(x1 ! x1
' , y1 ! y1

' )
0

Ts

"0
L

" P(x1
' , y1

' ))dx1
'dy1

'  

The recurrent connections make it difficult to compute the steady state of the sensory cells, so we 

assume that there are no recurrent connections between sensory cells. In the steady state, we can 

set!u(1)(x1, y1, t) /!t = 0 , so that 

Equation 4  u(1)(x1, y1) = S
(1)(M (1)(x1, y1))  

Next, we assume that the weight kernel W (1)(x ! x1, y ! y1) is a two-dimensional delta function, so 

that a sensory cell located at (x1, y1)  tastes only the pigment, P, at location (x0, y0 ) = (x1, y1) . Then 

we have 

Equation 5  u(1)(x1, y1) = S
(1)(P(x0, y0 ))  

This will become the sensory input to the neural net.  
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1.1.2 The model for the neural net 

Starting again with the steady state Wilson-Cowan equations: 

Equation 6  ue
(2)(x2 ) = Se

(2)(! e
(2)(x2 ))  

Equation 7  ! e
(2)(x2 ) = Kee

(2)(x2 )!ue
(2)(x2 )"Keh

(2)(x2 )!uh
(2)(x2 )+Me

(2)(x2 )  

Equation 8  Me
(2)(x2 ) = We

(2)(x2 ! x2
' , y2 ! y2

' )
0

TM

"0
L

" P(x2
' , y2

' ))dx2
' dy2

'  

For inhibitory cells, we have similar equations. Me
(2)(x2 ) is the sensory input to the neuron 

located at x2 .  

Again, assume there are no recurrent connections. Then we have the steady state equation: 

Equation 9  ue
(2)(x2 ) = Se

(2)(Me
(2)(x2 ))  

With a similar equation for the inhibitory neurons. 

1.1.3 The model for the secretory cells 

The secretory cells have first order temporal kinetics: 

Equation 10  ! (3) "u
(3)(x3, t)
"t

= !u(3)(x3, t)+ S
(3)(# (3)(x3, t))  

Equation 11  ! (3)(x3, t) = K
(3)(x3)!u

(3)(x3, t)+M
(3)(x3)  

Equation 12  M (3)(x3) = (We
(3)(x3 ! x3

' )ue
(2)(

0

L

" x3
' )!Wh

(3)(x3 ! x3
' )uh

(2)(x3
' ))dx3

'
 

The sensory inputs to the secretory cells are the weighted difference between excitatory neurons 

and inhibitory neurons. If there are no recurrent connections, then the steady state equation is:  

Equation 13  u(3)(x3) = S
(3)(M (3)(x3))  

If we assume that We
(3)(x3) and Wh

(3)(x3)  are delta functions, then we obtain 

Equation 14  u(3)(x3) = S
(3)(ue

(2)(x3)! uh
(2)(x3))  

This is the pigment at the growing edge, i.e.  
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Equation 15  P(x0, 0) = S
(3)(ue

(2)(x3)! uh
(2)(x3))  

1.1.4 The shell model 

Combining the models for sensory, neural and secretory cells, we have the complete shell model: 

Equation 16 Sensory cells:  u(1)(x1, y1) = S
(1)(P(x1, y1))  

Equation 17 Neural cells:  ue,h
(2)(x2 ) = Se,h

(2)( We,h
(2)(x2 ! x2

' ,!y2
' )u(1)(x2

' , y2
' )d

0

TM

"0
L

" x2
' dy2

' )  

Equation 18 Secretory cells: 

 

u(3)(x3) = S(3)(ue
(2)(x3) ! uh

(2)(x3)) 

Equation 19 Pigment:   P(x0, 0) = u
(3)(x0, 0)  

1.2 Discrete Shell Model 

The y-axis is time in the past. Let Δ be the spatial thickness of a single bout of pigment. We also 

use Δ to discretize the sensory cells. Assume TM = QΔ, which means the mantle can sense Q 

bouts of pigments into the past. Denote P(x0, t)as the pigment at position x0  at bout time t (not 

in real time). A(1)(x1, s!, t)  denotes the activity of sensory cell at position (x1, s!)  at bout time t. 

Ae,h
(2)(x2, t)  denotes the activity of excitatory or inhibitory neurons at position x2  at bout time t. 

A(3)(x3, t)  denotes the activity of secretory cell at position x3  at bout time t. Then we have 

Equation 20   P(x0, t) = A
(3)(x0, t)  

Equation 21   A(3)(x3, t) = S
(3)(Ae

(2)(x3, t)! Ah
(2)(x3, t))  

Equation 22  Ae,h
(2)(x2, t) = Se,h

(2)( We,h
(2)(x2 ! x2

' ,!s")A(1)(x2
' , s", t)d

1

Q

#0
L

# x2
' ds)  

Equation 23  A(1)(x1, s!, t) = S
(1)(P(x1, t " s))  

 

The discrete model is like: 

Equation 24   Pn+1(x0 ) = S
(3)(En (x0 )!Hn (x0 ))  

Equation 25  En (x0 ) = Se
(2)( We

(2)(x0 ! x0
' , j)

0

L

"
j=0

Q!1

# S (1)(Pn! j (x0
' ))dx0

' )  
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Equation 26  Hn (x0 ) = Sh
(2)( Wh

(2)(x0 ! x0
' , j)

0

L

"
j=0

Q!1

# S (1)(Pn! j (x0
' ))dx0

' )  

Figure S2 illustrates our discrete network structure. Our network is s simple feed forward 

network.  

 

Figure S2. Illustration of network structure we use. Each neuron connects to all the sensory 
cells. Each secretory cell only connects to the excitatory neuron and inhibitory neuron 
at the same location. 

1.3 Simulation Model 

We assume the two dimensional space-time  We,h
(2)(x2, j)  filter is separable, i.e.  

Equation 27  We,h
(2)(x2, j) = we,h

(2)(x2 )ve,h
(2)( j)  

This widely adapted simplification is to accelerate the simulations. 

In the simulation, we assume the spatial filterwe,h
(2)(x) is a Gaussian kernel 

Equation 28  we,h
(2)(x) =

! e,h
(2)

2"# e,h
(2)2 e

! x2

2# e,h
(2 )2

 

 

The difference of Gaussian kernels can generate a ‘Mexican Hat’, which is necessary for pattern 

formation. In our model, both excitatory and inhibitory neurons have Gaussian kernels. The 

excitatory Gaussian kernel has a narrower variance than the inhibitory Gaussian kernel.  Thus, 

the difference between them results in ‘Mexican Hat’.  The Mexican Hat kernel generates local 

activation and long-range inhibition that can generate periodic patterns. Similarly, the temporal 
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filter ve,h
(2)( j)  is assumed to be a difference of exponential functions that generate a local 

activation and long-range inhibition in time: 

Equation 29  ve
(2)( j) = !e1ce1

j ! !e2ce2
j for j " 0, !e1 = !e2 +1, ce1

j < ce2
j

 

Equation 30  vh
(2)( j) = !h1ch1

j ! !h2ch2
j for j " 0, !h1 = !h2 +1, ch1

j < ch2
j

 

This is equivalent to a refractory period that can generate temporal oscillations.  

We assumeQ = n , which means the mantle covers all of the previous pigment so that sensory 

cells can sense all the previous pigment. We define the temporal convolutions as follows: 

Equation 31  Re,n (x) = (!e1ce1
j ! !e2ce2

j )S (1)(Pn! j (x))
j=0

n!1

"  

Equation 32  Rh,n (x) = (!h1ch1
j ! !h2ch2

j )S (1)(Pn! j (x))
j=0

n!1

"  

Then we have 

Equation 33  Pn+1(x) = S
(3)(Se

(2)(we
(2)(x)!Re,n (x))" Sh

(2)(wh
(2)(x)!Rh,n (x)))  

In order to compute the temporal convolutions efficiently, we define notations: 

Equation 34  Re1,n (x) = !e1 ce1
j S (1)(Pn! j (x))

j=0

n!1

"  

Equation 35  Re2,n (x) = !e2 ce2
j S (1)(Pn! j (x))

j=0

n!1

"  

Equation 36  Rh1,n (x) = !h1 ch1
j S (1)(Pn! j (x))

j=0

n!1

"  

Equation 37  Rh2,n (x) = !h2 ch2
j S (1)(Pn! j (x))

j=0

n!1

"  

Then we obtain the following recursive equations 

Equation 38  Re,n+1(x) = Re1,n+1(x)! Re2,n+1(x)  

Equation 39  Rh,n+1(x) = Rh1,n+1(x)! Rh2,n+1(x)  
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Equation 40  Re1,n+1(x) = !e1S
(1)(Pn+1(x))+ ce1Re1,n (x)  

Equation 41  Re2,n+1(x) = !e2S
(1)(Pn+1(x))+ ce2Re2,n (x)  

Equation 42  Rh1,n+1(x) = !h1S
(1)(Pn+1(x))+ ch1Rh1,n (x)  

Equation 43  Rh2,n+1(x) = !h2S
(1)(Pn+1(x))+ ch2Rh2,n (x)  

So, Equations 33, 38, 39, 40, 41, 42 and 43 are implemented in our Matlab code to generate the 

patterns. 

1.4 Model Parameters 

The mantle’s length is L. When we fix the number of sensory cells in our discrete model, this 

length only influences the interval between cells, which does not affect the patterns. So, we let L 

=1 in all our simulations. 

There is a sigmoid function for the sensory cell, excitatory neuron, inhibitory neuron and 

secretory cell, respectively. So there are four sigmoid functions in our model. In this part, we 

assume all cells belonging to the same type have the same sigmoid function, i.e. all the sensory 

cells have the same sigmoid function, all the excitatory neurons have the same sigmoid function, 

etc. In later sections, we’ll discuss the cases where the cells belonging to the same type have 

different sigmoid functions, which can generate complex patterns. The analytic form of sigmoid 

function is: 

S(x) = !
1+ e"# (x"$ )  

Each sigmoid function has 3 parameters, i.e. !, ", # . !  is the middle point of the sigmoid 

function, 

 

!  is proportional to the slope at the middle point, and 

 

!  is the magnitude of the 

sigmoid function. We set 

 

! =1 for all sigmoid functions in our simulations. So we have 8 free 

parameters for the 4 sigmoid functions. 

The spatial kernels are Gaussians of the form  

we,h
(2) (x) = ! e,h

(2)e
"

x2

2# e,h
(2 )2

 



9/9 

What’s important for the pattern formation is the difference between the excitatory and 

inhibitory kernels, so we set the magnitude parameter !h
(2) = 1 .  This setting leaves us with 3 free 

parameters for the spatial kernels. Since there are 3 free parameters for each temporal kernel, we 

have 6 free parameters for temporal kernels. Thus our model is controlled by 17 free parameters, 

all of which have direct cellular interpretations. It turns out that the region in parameter space 

that generate realistic shell patterns is rather small. So the parameter search to match each shell 

pattern is not as difficult as the dimensionality of the parameter space might indicate. 

1.5 Related Models 

Cellular automata models were first used to reproduce shell patterns (3-5). Although they can 

generate some observed patterns, they cannot explain how these patterns arise in animal 

markings. 

Meinhardt and his coworkers (6-10) used morphogen, or Diffusion-Reaction (DR) models to 

reproduce a wide variety of shell patterns. DR models are inspired by the chemical diffusion of 

morphogens, but there is no experimental evidence found for diffusing morphogens in pattern 

formation for shells. DR models can be viewed as an approximation of neural activity when only 

nearest neighbor neurons communicate (chapter 12.4 in (11)).  

B. Ermentrout et al (12) and A. Boettiger et al (13) proposed neural models to reproduce shell 

patterns. Their models are somewhat different because they have different refractory terms. In 

(13), the refractory term is the temporal convolution of all previous pigment deposition, while 

refractory term in (12) is the temporal convolution of all previous pigments except the previous 

time period. Our model is inspired by these models, but is different in that we do not use an 

explicit refractory term. In the previous models, the pigment is the difference between secretory 

cells’ activities and the refractory term. In our model, the pigment results from the net activity of 

the secretory cells. The previous models can only generate basic patterns, but the current model 

includes ‘hidden’ networks, and so can generate more complex shell patterns. 

2 Pattern Generation 
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2.1 Basic Patterns 

Mathematically, as stated in (13), a Turing bifurcation leads to spatial instability, which 

generates stripes perpendicular to the growing edge; a Hopf bifurcation generates temporal 

instability leading to oscillations, which generate parallel stripes. An infinite saddle-node 

bifurcation probably underlies the travelling waves, but we have not proven this. 

(a) (b) (c)  

Figure S3. Bifurcations. Black indicates pigment. (a) Turing stripes. (b) Hopf bifurcation with 
synchronizing phase. (c) Hopf bifurcation with spatially continuously varying phases 
(Time increases upward) 

Figure S3 (a) illustrates the formation of Turing stripes. In the very beginning, all secretory cells 

have deposited a very small amount of pigment. Then due to the temporal inhibition, the cells go 

through an unpigmented period, except for two small groups of cells on the boundaries. The two 

groups have reached their steady states. The activities of the two groups have lateral inhibition 

on their lateral regions, so their neighboring regions have no pigments. After the unpigmented 

period ends, an array of cells have small pigments. Near the boundary of the array, the cells have 

local activation on both sides, but only have one side of long-range lateral inhibition, so stripes 

come into being near the boundaries. Consors has this kind of pattern. 

Hopf bifurcations can generate two categories of patterns. First, if the cells at different locations 

have synchronizing phase, then we get parallel lines, as shown in Figure S3 (b); second, if the 

cells have spatially continuously varying phase, then we get oscillations, as shown in Figure S3 

(c). 

If Turing bifurcation and Hopf bifurcation happen together, then we get Turing-Hopf bifurcation. 

There are two kinds of Turing-Hopf bifurcations depending on what the Hopf bifurcation is. If 
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the Hopf bifurcation generates parallel lines, then we get checkerboard like patterns. And the 

checkerboard pattern can be in phase or out phase. In-phase checkerboard means all the checkers 

have the same phase in time. Out-phase checkerboard means phases of spatially neighboring 

checkers have 180 degrees difference. Furvus has in-phase checkerboard pattern. The main 

pattern of tessulatus is out-phase checkerboard. If the Hopf bifurcation generates oscillations, 

then we get oscillating Turing-Hopf bifurcation, checkers of which have spatially varying 

phases. The main patterns of orbignyi and stercusmuscarum are oscillating Turing-Hopf 

bifurcation.  

When the secretory cell’s activity represses its future activity while exciting lateral cells, we get 

travelling waves. When two waves collide, they may reflect, singularly annihilate or mutually 

annihilate.  When the secretory cell has slightly wider excitatory range, then waves with 

changing speed emerge. Gloriamaris, omaria, textile, dalli, episcopatus and aulicus have 

travelling waves. 

Travelling waves can also generate triangles and dots. When the speed of waves is very big at 

some time, then there will be a sudden stop of pigment along an array of cells, which is the base 

of the triangle. Then waves starting from the boundaries of the array travel back to the 

unpigmented region, leaving a triangular region without pigment. Ammiralis, marmoreus, and 

bandanus have triangles. Two waves starting at the same point travel outward. At some time, 

they change to travel inward to the unpigmented region, leaving a spot region without pigment. 

Pulicarius, crocatus, arenatus and aurisiacus have spots.  

For Turing stripes, wider excitatory neuron spatial kernels lead to wider pigmented stripes, and 

wider inhibitory neuron spatial kernels generate wider unpigmented stripes. For the Hopf 

bifurcation, a wider excitatory neuron spatial kernel leads to wider pigmented parallel lines or 

oscillations, and a wider inhibitory neuron spatial kernel generates wider unpigmented parallel 

lines or oscillations. For waves, narrower spatial kernels can generate more dense waves.  For 

triangles, narrower spatial kernels can generate more and smaller triangles. For dots, narrower 

spatial kernels can generate more and smaller dots. 

2.2 Patterns with Spatial Pre-pattern 



12/12 

Some shells have more than one basic pattern. For example, ammiralis has triangles and Turing 

stripes. This pattern can be generated using two independent networks, one secretes pigment 

over another. In the current model we need use only one network to generate this complex 

pattern. The ammiralis shell is shown in Figure S4 (a). We view the triangles as the main pattern, 

so we find parameters to generate them. The stripes imply some parameter is different in the 

stripe regions. The simplest way to do this is to spatially vary the sigmoid function of the 

secretory cells. That is, the sigmoid function is assigned a spatial pre-pattern, and this spatial pre-

pattern can be generated by a hidden network that changes the middle points of the sigmoid 

functions along the mantle edge. In this scenario, we say the mid-point of the sigmoid function of 

the secretory cell has a spatial pre-pattern. The pre-pattern and generated shell are illustrated in 

Figure S4 (b). In the main pattern region, the parameters generate triangles. In the stripe region, 

the system reaches uniform steady states. Some of the spatial pre-patterns could be generated by 

a third hidden networ which generates Turing stripes. In our simulations, however, we simply set 

the parameter’s spatial pre-pattern for convenience. ammiralis, tessulatus, laterculatus, 

aurisiacus, stercusmuscarum, and orbignyi are generated with spatial pre-patterns. 

!"#$%#&'"()*"#$$)(+' ,#%+'"#$$)(+-'$(%#+.&)!' .)+)(#$)/'#,,%(#&%!'

!"#$%#&'"()*"#$$)(+'01''

(a) (b)
 

Figure S4. (a) An example showing shells with spatial pre-pattern. (b) Generated ammiralis 
and the spatial pre-pattern of θ(3). 
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2.3 Patterns with Spatio-temporal Pre-pattern 

For some more complex shells, such as textile shown in Figure S5 (a), a spatial pre-pattern only 

is not sufficient. On the textile shell, there are travelling waves, Hopf oscillations and Turing 

strips. What’s more interesting is that travelling waves appear occasionally in the stripe region. 

One may consider using three independent networks to generate the three patterns independently, 

and stack them to get the textile pattern. However, if we do it this way, it is impossible to get 

travelling waves in the stripe region. Therefore, we assume that the sigmoid functions of the 

secretory cells have spatio-temporal pre-pattern(s). For textile, we view the travelling waves as 

the main pattern, so that there are two spatio-temporal pre-patterns: Turing stripes and Hopf 

oscillations. Of course, one could view the Hopf oscillations as the main pattern, and the other 

two as pre-patterns. Any of these different assignment of the main pattern and pre-patterns can 

generate this shell.  

Since we assume the parameter’s spatio-temporal pre-pattern is controlled by hidden network(s), 

we need to discuss how this is generated by the hidden network. Assume there are N hidden 

networks. Each network has its own set of sensory cells, neurons and secretory cells. We cannot 

see activities of the hidden networks directly. But their activities are reflected by the pre-patterns 

on the shell. Besides the N hidden networks, there is one visible network whose activity is the 

pattern on the shell. Another assumption we use is that each network can only sense its own 

activity. This assumption is rational since there are different kinds of sensory cells on our tongue, 

and these cells can sense different stimulus, like spicy, sweet, etc. Based on these assumptions, 

we propose a simple but effective method to couple these networks. 

Use 

 

Pn (x,i) to denote the activity of the ith network’s secretory cell located at x and during the 

nth bout time. Assume 

 

Pn (x)  is the pattern on the shell. We make the parameter 

 

!n
(3)(x) , slops of 

the middle points of the secretory cells’ sigmoid functions varied by the activities of the N 

hidden networks as follows: 

!n
(3)(x) =! (3) ! fi (Pn (x, i))

i=1

N

"  

Where 

 

! (3) is the basic value for 

 

!n
(3)(x) . With this basic value only, the visible network generates 

the main pattern on the shell. The threshold function 

 

fi   is  
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fi(Pn (x,i)) =
ai if Pn (x,i) ! thresi
bi otherwise

" 
# 
$ 

 

This threshold function means that the ith hidden network has only two kinds of impact on the 

visible network. 

Figure S5 (b) shows the pre-patterns of textile. This pre-pattern is generated by 2 hidden 

networks. One generates oscillations and the other generates Turing stripes. On the main pattern 

region, the effect of oscillations is not strong enough to change the travelling waves pattern. In 

the Turing region, the effect is strong enough to change the pattern to stripes. And because of the 

effect of the oscillations, there are also oscillations emerging in the stripe regions. Interestingly, 

travelling waves emerge occasionally in the stripe regions. 

!"#$%&"''()$*%')"+(,,#$-%."+(/
&)(0&"''()$*%12&3%2/4#,,"'#2$/

&)(0&"''()$*%56)#$-%/')#&(/

-($()"'(7%'(8'#,(

/&"'#",0'(!&2)",%&)(0&"''()$%23%

(a) (b)  

Figure S5. (a)An example showing the main pattern and pre-patterns of Textile. (b)Generated 
textile and the spatio-temporal pre-pattern of ! (3) . 

3 Patterns Observed In Nature Correspond to A Small Region of 

Parameter Space 

The ‘Mexican hat’, or ‘center-surround’ neural field is required for pattern formation. Thus the 

inhibition must be longer range than the activation, but with smaller amplitude than the 

excitation. If excitation is long range, but inhibition is short range, there will be no pattern. In 

addition, the strength of the excitation and inhibition must be roughly the same. Indeed, we find 

that real shells have excitatory and inhibitory spatial kernels of limited width, i.e. their range of 

excitation is fairly local, and the excitation and inhibition is roughly balanced.  
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Figure 3(Right) in the main text shows two examples of patterns generated by the neural model 

for which we have found no representative species. Interestingly, patterns such as these are 

generated when the neural net has highly ‘unbalanced’ excitation vs. inhibition. The shell 

patterns in Figure 3(Right)  are unrealistic because the inhibition range is too large. We find that 

unrealistic patterns always have inhibition fields that are too long-range. The parameter region of 

realistic shells and the parameters of unknown A and B shown in Figure 3(Right) are illustrated 

in Table S1 
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Table S1 Parameters regions and the parameters for unknown pattern A and B shown in 
Figure 3(Right). The shaded row is the parameter that extends the inhibition to 
unrealistic size. 



16/16 

Supplement B: Statistical Methods and Phylogenetic 

Analyses 

4 Software and phylogenetic data 

The statistical and phylogenetic analysis was conducted using the R statistical language (14, 15) 

enhanced with the R phylogenetics packages APE (16), geiger (17), and phangorn (18) and 

custom scripts by N.J.M. (available upon request). 

The phylogeny used for the analysis was that of Nam et al. (19).  It is a well-supported 

phylogeny of the Conus species under study. The phylogeny, shown in Figure S6, is based on 

mitochondrial COI and rDNA sequences and on ITS2 sequences from nuclear ribosomal DNA. 

Nam et al. showed that ITS2 sequences resolved parts of the phylogeny that could not be 

resolved using only the mtDNA. The bootstrap values are sufficiently high that we will assume 

the phylogeny is correct.  

 

Figure S6. (a) DNA-based tree used in this study, digitized from Nam et al. (2009). Taxa not 
used in this study have been excluded.  (b) Ultrametric tree used in the study, 
calculated using NPRS. Absolute time information was not need for this study, so 
branch lengths are in units of relative time, with the root set to age 1. 

The phylogeny was digitized to Newick format using GraphClick 3.0 (http://www.arizona-

software.ch/graphclick/) and an in-house R script, TreeRogue 0.1 (available at: 

https://stat.ethz.ch/pipermail/r-sig-phylo/2010-October/000816.html).  Correspondence of the 

topology and branch lengths of the digitized tree to the original was verified before use.  Taxa 
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from Nam et al. that were not used in this analysis (C. radiatus, C. parius, C. japideus, C. 

vimineus, and outgroups) were dropped from the tree. 

The time-calibrated ultrametric phylogeny was calculated using non-parametric rate scaling 

(NPRS) with the program r8s (20).  Branch lengths are proportional to the total height of the tree; 

only branch lengths giving a relative measure of degree of shared ancestry were necessary for 

this study, rather than a tree calibrated to absolute time. 

5 Test for phylogenetic signal in the parameter estimates 

The estimation of neural network parameters is done manually through successive 

approximation.  Before examining the matter, there was no guarantee a priori that there would 

one unique parameter solution to produce a specific shell pattern, or that the user will find, in a 

19-dimensional parameter space, the single best match to the observed pattern in the living 

species.  Additionally, it was conceivable that there might no phylogenetic signal in shell 

patterns of the living species either for biological reasons (rapid evolution to an equilibrium 

distribution of shell patterns) or technical ones (e.g., nonidentifiability of parameters of the 

neural network model). 

To assess these assumptions, we tested whether or we could reject the null hypothesis of no 

phylogenetic signal in the 19 continuous parameters.  A neighbor-joining phylogeny was 

constructed from the parameters, as follows. (1) each of the neural network parameters was 

normalized to a 0-1 scale; (2) the normalized parameters were used to calculate the pairwise 

Euclidean distance between each pair of species; (3) a phylogeny was inferred from the resulting 

distance matrix via neighboring-joining (16). The parameter-based tree was then compared to the 

DNA-based tree using tree-to-tree distance metrics.  Two metrics were used.  A measure of 

topological distance (considering just tree topology, and ignoring branch length) was provided 

by  Robinson-Foulds topological distance, also known as symmetric difference (dist.topo, PH85 

option in APE).  This measures the number of partitions found in each tree which are not found 

in the other (21-23).  A measure of distance that takes branch lengths into account is provided by 

Robinson-Foulds branch-length difference, which is the sum of changes in branch length that 

would have to be made to made two trees identical (24); dist.topo in APE, BHV01 option). 
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Figure S7. Top: Comparison of the DNA-based phylogeny of cone snails (left, after Nam et 
al. 2009, unrooted for display) and the parameter-based tree (right, this study). Species 
labeled in blue exhibit major changes in topological position in the parameter-based 
tree. Bottom: Although by eye the trees seem rather different, their statistical 
similarity is much greater than expected by chance.  The observed tree-to-tree 
distances (blue arrows) are significantly smaller than expected under a null hypothesis 
of random similarity. Histograms show the distribution of distances between the 
DNA−based tree and the parameter−based tree (both ultrametricized and scaled to the 
same total length) under 10,000 realizations of the null hypothesis of no similarity 
between the trees (species names randomly shuffled in the parameter tree). 
Non−parametric p−value for topological distance = 0.0146; for the branch−length 
difference, p = 4e−04. 

The null distribution of the of DNA-tree-to-parameter-tree distances was constructed by 

randomly shuffling the tip labels on the parameter tree and measuring the distance between it and 

the DNA-based tree.  This was repeated 10,000 times.  For each distance metric, the one-tailed p-

value was obtained by comparing the rank of the observed distance between the parameter tree 

and the DNA tree to the 10,000 ranked distances from the null distribution. For branch-length 

difference, it is possible that the non-ultrametric nature of the DNA tree and the parameter tree, 

and the different total lengths of the trees, could bias the results, so the test (including generation 

of the null trees) was repeated on ultrametricized versions of the DNA tree calculated with 
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nonparametric rate smoothing (NPRS) in r8s (20) and the parameter tree (which was midpoint-

rooted, and then rescaled with NPRS), with no substantial differences in results.  

The observed tree-to-tree distances, and the null distributions on tree-to-tree distances, are shown 

in Figure S7 for the case where both compared trees were ultrametric.  For both distance metrics, 

the observed distance between the DNA tree and the parameter-based tree was significantly 

closer than expected under the null of random similarity between the trees.   

6 Phylogenetic signal in discrete characters 

In order to compare our results to those that might be obtained using more traditional cladistic 

methods where the shell patterns are described with discrete character states, several prominent 

discrete shell-pattern characters were scored in the traditional cladistic manner based on 

photographs of the species.  The characters were scored as follows: stripes: 0=absent, 1=weak, 

2=strong; triangles: 0=present, 1=absent; dots: 0=absent, 1=present; color: 0=black and white 

only, 1=brown/orange and white.  One shell shape character was also scored: conical shape: 

0=strongly rounded, 1=weakly rounded, 2=no rounding (triangular cone).  Additionally, prey 

preference was scored according to Nam et al.’s descriptions (0=piscivore, 1=verminivore, 

2=molluscivore, ?=unknown).  These characters were mapped onto the phylogeny using 

parsimony and maximum likelihood, which gave similar results.  The congruence of these 

characters with the phylogeny was measured with consistency index (CI), retention index (RI), 

and rescaled consistency index (RCI), and the significance of these results was assessed by 

comparison to null distributions of these statistics generated by 1000 reshufflings of the tip data. 

Phylogenetic signal in discrete characters. Parsimony-based summary statistics for the 8 discrete 

characters are shown in Table S2-S5. 
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Table S2 Parsimony summary statistics (CI, RI, RCI) for discrete characters along with the 
inputs to these statistics. Values closer to 1 indicate more congruence between the 
character and the phylogeny. However, these must be compared to null distributions to 
determine if the observed values of the statistics are higher than would be expected 
under the null hypothesis of no phylogenetic signal (see Table S3 and Table S4). 
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Table S3 Means of summary statistics calculated on 1000 draws from the null hypothesis 
where character states have been randomly shuffled on the tips (no phylogenetic 
signal).  
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Table S4 Non-parametric p-values (one-tailed) of summary statistics, based on the rank of the 
observed statistic amongst the ranks of the 1000 null draws of the statistic summarized 
in Table S3. The null hypothesis of only random congruence with the phylogeny 
cannot be rejected at the p=0.05 level for the stripes and dots characters.  No 
Bonferroni correction for multiple tests has been applied; if it is, then s3n_spd, 
triangles, and color also fail to reject the null at the p<0.05 significance level. 

Two discrete characters, stripes and dots, fail to reject the null hypothesis of only random 

congruence with the phylogeny, with one-tailed non-parametric p-values > 0.05 (Table S4). For 

each statistic, a value of 1 indicates perfect congruence with the phylogeny, 0 means no 

congruence.   The statistics for prey preference are all 1, indicating perfect congruence with 

phylogeny (Table S4).  And the discrete characters, all taken together, also exhibit significant 

congruence (Table S4).  However, the variability in stripes and dots indicates substantial 

homoplasy in these characters, despite their obviousness to human observers.  This is likely an 

indication that multiple convergent pathways able to produce these patterns. 
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7 Test of character independence 

Before estimation of ancestral states was attempted, the parameter estimates for living species 

were examined for correlation structure, as the simplest methods of ancestral character 

estimation assume that each character is independent.  Using standard correlation analysis  

(Pearson’s product-moment correlation, p-values produced with t-test), only 10 of 171 parameter 

pairs exhibited statistically significant correlation (p < 0.05 after Bonferroni correction for 

multiple tests).   

Standard correlation analysis is dubious when the data may have correlation due to shared 

phylogenetic structure, so the correlation analysis on the 19 species was repeated on the 18 

available phylogenetically-independent contrasts (PICs) (25).  PICs were calculated using an 

ultrametricized phylogeny derived from the Nam et al. molecular tree by nonparametric rate 

smoothing (NPRS) (20).  Using PICs, only 7 of 171 parameter pairs were statistically 

significantly correlated.  Of these, two pairs were the β parameters of the temporal kernels of the 

excitatory and inhibitory neurons (βe1 and βe2 formed one pair, and βi1 and βi2 the other), which 

were always perfectly correlated in the estimates made on living species (the first parameter of 

the pair is always 1 unit higher than the second).  The others were correlations of about 0.75-0.9 

between parameters of the response functions of the excitatory and inhibitory neurons and the 

parameters of the temporal kernels for the excitatory and inhibitory neurons.  A more elaborate 

analysis might take these correlations into account, or even take into account weak correlation 

structure that exists despite statistical insignificance, but for the present purpose of assessing the 

feasibility of integrating the developmental model with phylogenetic methods, statistical 

simplicity was preferred, and was judged to be a reasonable approximation given the overall 

weak correlation structure. 

8 Model Selection 

Tests for trait correlations using Phylogenetic Independent Constrasts (PIC), and the estimation 

of ancestral states, are most easily performed if the trait data can be modeled as evolving under a 

Brownian motion process.  Under Brownian motion, traits wander without limit such that the 

expected variance (σ2) between lineages increases as a linear function of phylogenetic distance.  



22/22 

This may be a valid approximation within a relatively closely-related clade where the traits have 

not yet run up against intrinsic limits (26-28).  The Brownian motion model was tested against a 

variety of other models of continuous trait evolution using parametric methods (likelihood ratio 

test (LRT) and Akaike Information Criterion (AIC), (29) as well as nonparametric methods; the 

latter are expected to be more robust in the situation where the low number of taxa (here, 19) 

mean that the asymptotic assumptions of maximum likelihood inference may not be met in full. 

(30) 

Seven models for the evolution of continuous traits were compared.  The likelihood of the trait 

data under of each of the models was calculated using the R package geiger. (17)  The Brownian 

motion model has two parameters (global mean and rate of variance increase); all of the others, 

except white noise, add one additional parameter so as to model stabilizing selection (Ornstein-

Uhlenbeck, OU), lack of phylogenetic signal on internal branches (lambda), speciational or 

punctuated evolution (kappa), increases or declines in rate across the tree (delta), or an early 

burst of evolutionary change which then declines.  White noise assumes no phylogenetic signal 

and simply models the data as a normal distribution with a mean and variance. (17, 27, 29, 30) 

The log-likelihoods for the neural network parameter data under each model are given in Table 

S5. 
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Table S5 Log-likelihoods of the observed shell pattern parameters as explained under 
different models. Parameter abbreviations on the x−axis correspond to those in Table 
S9, with underscores removed and with the last character being the Latin equivalent of 
the relevant Greek symbol. 

Likelihood-Ratio Tests (LRT). All of the models except for white noise contain Brownian motion 

as a special case and thus can be compared to Brownian motion via a LRT, which is chi-squared 

distributed with 1 degree of freedom. (31) The LRT fails to reject the Brownian motion model at 

the 0.05 significance level for 16/19 neural network parameters.  When Brownian motion loses, 

it loses to the O-U model, which suggests that stabilizing selection is removing phylogenetic 

signal (Table S6). 
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Table S6. P-values of likelihood-ratio tests (chi-squared, 1 d.f.) for each model compared to 
the Brownian motion model.  Tests that are significant at the 0.05 level are bolded.  
No correction for multiple testing was made here; a Bonferroni correction for 95 tests 
makes all results non-significant at the 0.05 level. Parameter abbreviations on the 
x−axis correspond to those in Table S9, with underscores removed and with the last 
character being the Latin equivalent of the relevant Greek symbol. 
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Figure S8. Akaike Information Criterion weights of 7 models for the evolution of neural 
network parameters. The models compared are: Brownian motion (BM, brown); the 
Ornstein−Uhlenbeck (OU, red) stabilizing selection model; the lambda model (orange) 
which rescales internal branch lengths by a linear fraction; the kappa model (green) 
which rescales each branch length by a power equal to the kappa parameter, and which 
becomes a speciational model as kappa approaches 0; delta (yellow) which focuses 
change towards the base or tips; early burst (EB, cyan) which has an initial high rate of 
change that then declines; and white noise (white), where observations are produced 
by a normal distribution with no tree structure, which represents the situation of no 
phylogenetic signal. Brownian motion (BM) has the highest AIC weight for 68% of 
the parameters (13/19). White noise (no phylogenetic signal) is superior for 16% 
(3/24) of the parameters. Parameter abbreviations on the x−axis correspond to those in 
Table S9, with underscores removed and with the last character being the Latin 
equivalent of the relevant Greek symbol. 
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Akaike Information Criterion. All of the models can be compared to each other at once using 

AIC weights (29), shown in Figure S8.  Here, Brownian motion has the heaviest weight for 

13/19 parameters.  Typically this is a plurality rather than a majority weight, which is not 

surprising considering that the weight is being apportioned among seven models, the limited 

number of taxa limits the power to distinguish models, and the fact that the additional parameter 

of the non-Brownian models often converges upon parameter value that produces the Brownian 

model. 

Non-parametric tests. Blomberg et al.’s (32) K is a measure of phylogenetic signal. K is the ratio 

of the observed MSE0/MSE and expected MSE0/MSE, where MSE0 is the mean squared error 

between the phylogenetically correct mean and the tip data, and MSE is the mean squared error 

derived from the variance-covariance matrix calculated from the phylogenetic tree.  The 

observed MSE0/MSE is calculated from the data, and the expected MSE0/MSE is calculated from 

1000 nulls generated by reshuffling the tip data. K=1 indicates that a trait is evolving via 

Brownian motion and that trait data has a variance-covariance matrix that mirrors the 

phylogenetic structure.  K<1 indicates less phylogenetic signal than expected under Brownian 

motion; K > 1 indicates phylogenetic overdispersion in the trait data (28).  
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Table S7. Observed values of Blomberg's K for each neural network parameter, compared to a 
distribution generated under a null hypothesis of no phylogenetic signal (tip data 
randomly reshuffled 1000 times). The proportion of the null distribution beneath each 
observed K is reported; all proportions are above 0.5; 7 are significant at the 0.025 
level. Parameter abbreviations as in previous tables. 

The K statistics calculated for observed trait data were compared to two null hypotheses, one 

generating K statistics under a null hypothesis of no phylogenetic signal (tip data reshuffled 1000 
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times), and a second generating K statistics by simulating data under the Brownian motion fit to 

each trait.  The proportion of the null distribution less than the observed K was calculated for 

each paramter. Under the no-signal null hypothesis, all observed K statistics are in the top 50% 

of the null distribution, indicating that the observed K is always higher than the mean of the null 

distribution. 13/19 observed Ks are in the top 10% of their nulls, 11/19 in the top 5%, and 7/19 in 

the top 2.5%.  This indicates that most traits exhibit more phylogenetic signal than expected by 

chance (Table S7). 

Comparison of the observed K statistic to K statistics generated by simulating under the best-fit 

Brownian model for each trait allow the detection of traits that show significantly more or less 

phylogenetic signal than expected under Brownian motion.  Results are presented in . Only one 

parameter has a significantly lower K (and thus, less phylogenetic signal) than is expected under 

this null distribution (SF_2_e, σe, p=0.019), although the 95% confidence interval is quite broad 

and two other parameters would have significantly low Ks in a one-tailed test (Table S8). 

 

Table S8. Observed values of Blomberg's K for each neural network parameter, compared to a 
distribution generated by simulating each trait under a pure Brownian motion model, 
at the rate estimated by ML for each parameter.  The proportion of the null distribution 
beneath the observed K statistic is reported; Brownian motion can be rejected in only 
1 case at p<0.025 level (two-tailed non-parametric test).  Parameter abbreviations as in 
previous tables. 

As one additional check that the Brownian motion assumption was reasonable to use for PIC and 

ancestral state reconstruction, a variety of diagnostic plots were generated as suggested by (30) 

and D. Ackerly (personal communication). These confirmed that in general the data were 

roughly normally distributed, and that the PICs did not show significant correlations with node 

depth or node value. 
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Brownian motion models are often run on ln-transformed data, e.g. if the trait distribution is 

highly skewed or varies over several orders of magnitude (as can happen with e.g. body size or 

genome size), or if there is concern that having a lower trait boundary of 0 could violate the 

assumptions of Brownian motion.  Therefore, all of the above tests, and subsequent ancestral 

state reconstruction, were also replicated on a ln-transformed version of the neural net 

parameters. (For a few parameters, this required setting 0 values to 10% of the minimum nonzero 

value for that parameter, before ln-transformation.)  However, this did not produce substantial 

change in results or interpretation and the results of ancestral state estimation were highly 

correlated, as might be expected given that the raw parameter data is roughly normally 

distributed and typically not close to 0. 

9 Ancestral State Reconstruction 

 

Figure S9. Maximum likelihood ancestral parameter estimates for neural net parameter S_2_e, 
ν (excitatory neuron response function, ν parameter; abbreviated s2en). 

Ancestral states were estimated for each continuous parameter using maximum likelihood 

estimation under the Brownian motion model, as implemented in the ace function of the R 

package APE (16). After ancestral parameter values were estimated, shell patterns were 

generated from them using the same model as used for the living species and plotted on the 
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phylogeny.  Discrete characters were also estimated using ML; the color estimation was 

incorporated into the illustrations of the ancestors. 

Results 

ML estimation of continuous parameters. Examples of maximum likelihood estimations of 

ancestral parameter values are shown in Figure S9 and Figure S10. 

 

Figure S10. Maximum likelihood ancestral parameter estimates for neural net parameter 
S_2_e, θ (excitatory neuron response function, θ parameter; abbreviated s2et). 

Inspection of the estimated history of these parameters and the others indicates that many clades 

do show similarities in parameter values with nearby species.  However, as expected, estimates 

for each parameter tend towards the overall (phylogenetically corrected) average as estimates are 

made for ancestors further and further back in time, and uncertainty increases. 

ML estimation of discrete characters.  

In addition to the character mapping described in the main text, other discrete characters were 

also mapped for comparison (Figure S11). Cone shape is fairly scattered but shows some 

uniformity in small clades. Strikingly, prey preference shows extremely high conservation (as 

was clear in the discussion of Nam et al.) compared to shell pattern characters. Each major clade 

is almost completely restricted to a certain prey, and the entire pattern is explained by the 

minimum possible number of transitions.  
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Figure S11 also shows the distributions of dots and color (black versus orange/brown) in this 

group and the maximum likelihood assignment of ancestral states. The presence and absence of 

dots and cone shape are scattered throughout the phylogeny, indicating that they are 

evolutionarily labile, although orange/brown color shows some correlation with large clades. 

 

Figure S11. ML estimation of history of discrete characters.  Character coding: dots 0/1 
present/absent; color: 0=black and white, 1=orange/brown and white; conical: 
0=rounded, 1=slightly rounded, 2=conical; food: 0=piscivorous, 1=vermivorous, 
2=molluscivorous. See text for details. 
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